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Abstract: The benefits of design decision support systems (DDSSs) in the architectural planning
context have been proven in research and are increasingly used in practice. The sense and purpose are
apparent. The weighing of the most diverse ideas and approaches are required for design problems
that cannot be solved unambiguously and are characterized by complex, open issues of architectural
design tasks, coupled with contradictory criteria. DDSSs support planners/decision-makers with
objective information to support the decision-making process with well-founded data and statements.
This is becoming increasingly necessary, especially given increasingly complex construction tasks, and
thus the difficult-to-predict effects of decisions. Taking this maxim into account, however, also reveals
challenges in the planning context, as well as the immense potential and fields of application. Building
on these issues, this article presents a perspective for DDSSs. The paper discusses the current focus
and advancements of such systems, highlighting the challenges such tools still face, and provides a
vision of the perspective future of these systems from reactive systems to proactive assistance.
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1. Introduction

As early as the 1960s, assistance systems were developed as a contrary movement to
automatic design machines in the architectural context [1]. In contrast to automatically
acting design systems, the basic idea of assistance systems is to support decision-makers
with additional information. These systems include a set of related computer programs and
the data required to assist with analysis and decision-making within an organization [2]. In
concrete terms, these are usually analytical tools that analyze an existing situation based on
predefined criteria and present results to the user in a process-integrated manner. Thus,
DDSSs serve to provide decision-makers with supporting data to improve the manageabil-
ity of decision-making within the design process. For the assessment of the results, the
generation of different solution approaches, their subsequent comparison, and the decision
itself remain on the human side.

If we look at the type and form of architectural tasks in this context, it becomes
apparent that these systems are ideally suited for support in the architectural planning
context. Irrespective of the specific forms of architectural tasks, the purpose of design
decision support systems can be especially seen in open problems, i.e., questions that
cannot be answered unambiguously. Architectural tasks belong to this type of problem
and can be counted substantially among so-called “wicked problems”, i.e., problems that
do not have a clear best solution. This leads to a process of the synthesis, analysis and
evaluation of ideas [3]. It is here that the added value of DDSSs can be found. The available
calculations present objective aspects to decision-makers so that the phase of evaluation and
decision-making can be better founded and, ideally, become better in the long term. The
advantages are apparent. Digital systems analyze the design idea and identify the effects a
design decision. These not only have to be clear and unambiguous findings, but they can
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also be long-term aspects that are not directly apparent (e.g., sustainability, comfort, etc.),
which can flow into the decision-making process. The concrete requirements for DDSSs can
be defined when considering the architectural design process to ensure these advantages
and, more specifically, to formulate a visionary approach. These are based, among other
things, on the criteria for design tools set out by [4].

1. Interoperability: Design decision support systems are supporting systems. However,
support—in the sense of the system—is only possible if the “support” is directly inte-
grated into the work process. The more seamless the integration, the less disruption
within the design process. To achieve this, the systems must be able to record the
initial design-relevant situation, the design activity and the design itself.

2. Incomplete Input: Ideas are often vague and incomplete in early design phases.
Things may only be vaguely sketched or not fully defined. This is independent of the
form of representation and the medium. Instead, the ideas are usually not thought out
concretely. For DDSSs, even incomplete or erroneous data can be interpreted, utilized
and extrapolated upon.

3. Ad hoc: A “seamless integration into the process” requires that the process of design-
ing or deciding is not interrupted. This applies not only to user prompts, e.g., for
activation, but also to feedback from the systems. In concrete terms, the results must
be made available directly and ad hoc, regardless of the complexity of the design or
calculations. Further, user input should be interpreted from their interactions and
reactions to the system’s feedback.

4. User-Friendliness: A core point relating to user-friendliness is that the supporting
feedback needs to be easy to understand, whether visually, through haptic feedback,
acoustically, or otherwise. Understanding the effects of the decisions must be as
simple and quick as possible. This applies not only to experts but to lay people
as well.

As can be seen from the defined requirements for the design tools, DDSSs must
function seamlessly without requiring intervention from the user and must not disturb the
process—neither through complex input procedures, queries and messages nor through
other disruptive factors. Instead, the systems must show the effects of the decisions made
by the planner and where problems can occur without interference or user prompting.

The requirements listed above indicate the functional requirements and conditions for
DDSSs to be integrated successfully in the early design stages of planning. Considering
these requirements, the state-of-the-art research is presented and evaluated. Building
upon this research, we hypothesized what challenges modern solutions are facing. In this
paper, we propose an approach that will provide a solution to these requirements while
simultaneously presenting a paradigm shift in the design of such systems. Leveraging
advancement in the field of artificial intelligence (AI), we present a novel concept for the
future perspective of DDSSs in the early design stages.

2. State-of-the-Art Research

Since the mid-1960s, decision support systems (DSSs), which support planning and
decision-making in complex problems (poorly or partially structured decision problems),
have been systematically investigated in various research areas [5]. Based on the purpose
of use, different domains of application and types can be identified.

In the field of spatial planning, urban planning and architecture, special DSSs have
been established for different planning tasks and planning areas, such as for pre-design
solution comparisons and cost estimates by visualizing different solution variants [6]. In
combination with the functionalities of a GIS (geographical information system), DSSs
represent a spatial decision support system (SDDS), whereby the DSS takes on a spatial
dimension [7]. Such systems exist for various planning fields, for example, in spatial plan-
ning and nature conservation [8] or waste disposal planning [9]. Planning support systems
(PSSs) focus on scenario planning [10,11]. In this context, the LEANkom project, part of the
REFINA funding program, investigated the visualization of fiscal impacts of local housing
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development projects [12]. There are also solutions for spatial planning [13] or energy
planning [14]. Design decision support systems (DDSSs) are comparable to PSS systems.
Still, the focus is not on finding solutions for long-term planning and planning strategies,
but on the limited aspects of the design process. DDSS systems are developed, for example,
in the context of a computer-aided knowledge-based design [15] using various aspects of
master planning [16], as well as collaboration and visualization [17] for urban planning,
transport planning [18], or building law [19]. The goal of group decision support sys-
tems (GDSS) in planning scenarios is to support distributed project planning with several
planning participants in groups, even over spatial distances [20]. New communication tech-
nologies in construction have been investigated with regard to optimizing communicative
relationships among the participants [21], and technical foundations for better cooperation
between different project partners have been developed [22]. A very prominent modern
way of integrating decision support systems into the workflow is through the introduction
of so-called “dashboards” that provide the user with overview values based on specific
scenarios [23,24]. The challenges of integrating flexible decision support systems have
led to the introduction of whole systems [4,25,26], providing a complete workflow system
that wraps around the basic design principles. To provide more relevant ad hoc feedback
to the user, these systems have focused on developing surrogate models of simulations.
Such models offer estimates of the results that can be expected through actual simulation
and analysis tools but for a fraction of the required time [27–29], allowing for them to be
embedded into established design processes or generative designs.

One challenge that can be observed by such models is the lack of a clear-cut approach,
for which a surrogate model for a specific simulation or analysis should be used for
different use cases [30–32]. Due to the rapidly changing and growing field of AI and deep
learning (DL), a wide range of approaches have been proposed for underlying simulations
as well. For example, in the field of computational fluid dynamics, which is the base
for the computational wind engineering field, there are several approaches of creating
surrogate models—from super resolutions [33] and complex generative adversarial neural
networks [34], to multi-neural network approaches [35]. With all these proposed approaches
tailored only to specific theoretical application areas, the potential for expanding them on a
larger scale remains to be explored.

The scope of various DDSSs that have been developed in research fields or as com-
mercial products has been heterogeneous. In order to evaluate such solutions for their
suitability for integration in early design stages, the criteria defined in Section 1 were used
to evaluate the proposed solutions. The criteria were graded from (--) for not fulfilling the re-
quirement, over (-) for non-fulfilment of the requirement in part to (+) for meets some of the
requirements and (++) for having a requirement ideally fitted for early design stages. The
responsiveness column evaluated how the solutions worked, whether reactively—performing
their tasks only when triggered by the user—or proactively—anticipating the user input
and proposing solutions before being explicitly requested by the user. As shown in Table 1,
the majority of the DDSSs proposed in the literature focused on the development of tailored
solutions to specific single-criteria optimization problems. Such solutions require a large
amount of concrete information from the design model. Due to the complexity of such
solutions, they are often developed as full software packages. This causes a more difficult
integration into the design tools but provides the advantage of user-friendly interfaces
as ad hoc results. On the other hand, the commercial products such as those referenced
in [36–38] were either integrated into digital design tools or provided a complete design
platform. Such solutions are well suited for working with vague and incomplete data,
typically in the early design stages. Furthermore, they can provide ad hoc results and
have sufficiently robust, but simple-to-use user interfaces. The main drawback of all the
examined solutions is that they rely on the explicit needs of the user, requiring the user to
interpret the provided information and generate their own alternatives. This negatively
disrupts the design process.
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Table 1. Analysis overview of DDSSs.

Name Interoperability Incomplete Input Ad Hoc User-Friendliness Responsiveness

PLOOTO-LC [39] 0 -- - - Reactive
Design Puzzle [40] -- + N/A ++ Reactive

[41] - -- + -- Reactive
[42] + -- 0 N/A Reactive

KDSMS [43] - - ++ + Reactive
[44] -- - ++ + Reactive
[45] 0 -- 0 ++ Reactive

Urbanistic [36] -- ++ + ++ Reactive
[46] -- - ++ + Reactive

Chameleon.tools
[37] - 0 + + Reactive

Cove.tools [38] ++ 0 + + Reactive

As shown in this literature overview, diverse types of DSSs have attempted to solve
different combinations of the requirements set out at the beginning of this paper. However,
none have achieved all of them. In the following sections, the paper will introduce a novel
concept and paradigm shift in the design of DDSSs.

3. Vision—Reimagining DDSSs

Building upon the current research state, presented briefly in the literature overview,
and following the requirements defined in the introduction, a new perspective for DDSSs
will be presented in this section. The core element is built upon a direct, close human–
machine interface—a seamless connection between the user and the supporting tool. By
observing the existing tools in the research and the industry, it can be seen that the DDSS
research has mainly focused on the traditional digital tool approach of interacting with the
user—focused on a proactive user by activating a specific functionality of the system via
the use of various UI Elements, where any functionality is either always present or only
available for the user on demand. Comparing this approach to the requirements defined
at the beginning of this review, it can be postulated that such solutions lead to a negative
disruption of the design process, as the user must interrupt their actions to activate the
system or make a suboptimal or misinformed decision due to permanent unnecessary
feedback. This issue is further exacerbated by the fact that the definition of which criteria
play a crucial role in the design is vague and difficult to define beforehand.

The constant increase in the technical, regulatory and safety requirements towards
urban planning leads to the necessity of incorporating them into the design process as early
as possible. Accurate predictions based on architectural decisions are needed at all the
relevant planning levels. Thus, this sheer quantity of regulations, simulations and design-
relevant parameters is no longer manageable by the planner alone. More importantly, it is
no longer possible to conduct this process manually. Therefore, the planner must have an
omnipresent overview of all the requirements but must also be capable of acting upon this
information. This challenge highlights where the future of DDSSs have immense potential
for expansion and improvement.

Considering the current state-of-the-art development, the areas of application and the
criteria for successful integration, it is clear that DDSSs have been designed primarily as
reactive systems. Such systems must be consciously activated and controlled by the user
and focus on providing an analysis of the current scenario presented to them. The user
must actively request and define how the monitoring of this evaluation is conducted and
can only optimize the process based on the respective parameters. This leads to a direct
interruption of the planning process to define the analysis parameters and their boundary
conditions. Current DDSS tools focus on single-criteria optimization scenarios, making
multi-criteria optimizations prohibitively difficult to implement and compounding the
previously identified issues.
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Ref. [47] accurately stated that “the architect needs a CAAD system that ‘looks over
his/her shoulder’ while designing and that informs about the qualities of the design [. . .]”.
This is precisely what is needed in the early planning phases. However, DDSSs have been
developed as reactive systems to date. The user must interact with them explicitly, defining
precisely what is needed and when. A shift in the design of such a system is required for
them to promote a broader appeal and realize an “over the shoulder” approach. The focus
should center on developing such systems to proactively monitor what the user is doing
and propose ideas, suggestions, etc.

Some approaches in this school of thought were already developed and used in the
1990s. This includes, among others, more freely acting solutions such as “Clippy” [48]. The
issue that these approaches faced was their limited perception. The system reacted only to
predetermined patterns in the text, seldom providing actual value to the user. Furthermore,
such “user interface agents” were an integral part of the GUI. This further contradicted the
non-disruptive approach required of future DDSSs—focusing more on the agents and their
capabilities and less on the interface.

It is clear from the literature overview that such a solution would require a paradigm
shift in how such issues are solved. Exploring adjacent research fields for potential novel
solutions is a natural expansion of this field. In recent years, AI has shown that it can
tackle both the issues faced with complex evaluation, such as runtime and precision, and
analyzing behavioral and subjective patterns. Only in this way is it possible to extract and
learn the design needs of the user without disruption and build upon them. The relevant
regulations and simulations can be analyzed and presented, if necessary.

The design decision support systems of the future need to fulfill a wide range of
objective and subjective criteria. The system needs to provide ad hoc results for a wide
range of optimization problems, such as wind, solar potential, optimal volume, construction
costs, building regulations, etc. At the same time, the user interactions need to be analyzed,
and the potential goals and preferences of the user and the context of the scenario need to
be inferred. The extracted subjective information, combined with the ad hoc results of the
simulation and analysis tools, would enable design alternative generations tailored to the
user and the scenario at hand, providing solutions to the user about problems they have
not yet discovered.

This leads to the formulation of more concrete criteria for such systems in the context
of creative architectural planning.

• Design recognition: understanding the geometry, design tasks and necessary functions.
• Critical area detection: the capability of recognizing the parts of the design area that

are most relevant in the design context.
• Critical area analysis: the detection of potential issues generated by the design must

be proactively detected and presented.
• Design suggestions: based on the analysis and design recognition, potential solutions

must be generated and presented to alleviate the detected issues.

In the following section, a technical system concept will be presented and potential
concrete examples of addressing its key features will be discussed.

4. System Concept

Establishing a DDSS in the form of an assistant that overcomes the limitations dis-
cussed so far would require a complex system. The sheer scope of the input information
and tasks that need to be solved are prohibitive to model using a singular AI model or
algorithm. Recent advancements in the open distribution of AI and DL algorithms has led
to the possibility of artificial general intelligence (AGI). Ref. [49] found that by leveraging
large language models to process complex requests and dividing them into smaller chain
of tasks, it is possible to approximate AGI. Building upon this concept, we proposed a
design decision support assistant consisting of multiple agents working in concert. The
core features can be defined as follows.
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• Digital interface—this interface facilitates the scope of the necessary user interactions
in the early design stages. It holds the representation of the digital model and all the
results provided by the other agents.

• Objective AI—a cluster of agents capable of evaluating ad hoc designs based on a
wide range of simulations, regulations and analysis tools.

• Subjective AI—a cluster of agents focusing on understanding the needs of the designer
without the need for interactive user feedback.

• Design alternative AI—utilizing both objective and subjective AI agents to provide
potential alternatives to the user.

Due to the reusability and adaptability of modern DL and AI approaches [40,41], a
modular approach is necessary. This facilitates the possibility of exchanging solutions when
better options become available. The introduction of platforms such as HuggingFace [50]
and solutions such as ONNX [51] facilitate the possibility of abstracting DL and AI solutions
to standard interfaces, which would allow for specific agents of the proposed concept to be
integrated into a broader set of digital interfaces. The particular type of solutions and an
interaction loop are briefly presented, as shown in Figure 1.
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4.1. Digital Interafce

Although solutions have already been developed that merge digital tools with multiple
sources of designs that are typical for early design stages, such as physical models and
vague sketches [4,52], there is still room for expansion. With the rise of the efficiency of
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AI and, specifically, deep learning (DL) approaches, several existing methods could be
expanded and improved upon. Examples of object detection [53], object tracking [54], or
even 3D object reconstruction [55] with various deep learning algorithms achieved a higher
accuracy in their prediction than traditional approaches used in computer vision. The
toolset of the digital interface can be further expanded upon with the introduction of more
complex tasks, such as 3D gesture recognition [56] and voice commands [57] to facilitate an
even more seamless interaction with the digital interface. All these modern approaches
focus on the application of convolutional neural networks (CNNs) or transformers to
process structured n-dimensional data and provide the necessary predictions in real time,
making them ideal for the expansion of the digital interface interaction toolkit. This
would allow for even more established tactile planning interfaces to be embedded into the
digital interface.

4.2. Objective AI

The goal of objective AI, or more accurately, the several AI agents that form this
module, is to process data based on the boundary conditions extracted from the subjective
AI module and a given digital model detailed analysis of various regulations, simulations
and analysis evaluations. The state-of-the-art research focused on creating “surrogate”
models of underlying numerical simulations utilizing various neural network architec-
tures [29,58–60]. After training, such models can provide highly precise results in just a
fraction of the standard computation time. The disadvantages, such as being too narrowly
tailored to specific scenarios, must be addressed by introducing a more comprehensive
range of parameters for describing the scenarios at hand. Furthermore, such models can
only be trained and optimized for specific simulations and evaluations before becoming
untrainable. This leads to the requirement that robust DDSSs do not have only one DL
model but a toolbox of models working in concert.

The backbone of each tool in this toolbox will be a neural network model tailored to
the problem. For example, fully connected neural networks can be used for simpler models,
such as energy simulations or cost analyses, and more complex neural networks based on
convolutions, transformers, or diffusion models can be used for wind or solar potential.
These models must be able to receive consistent updates based on the user interactions and
the subjective models.

4.3. Subjective AI

While the objective evaluation of the user interaction loop is processed, a second
subjective evaluation will be executed in parallel. The goal of this subjective AI module
is to anticipate not only the needs of the planner but also extract the subjective design
idea and priorities for the specific project. This information can be extracted through the
analysis of user interactions based on the feedback they are provided. Since DDSSs are
digital systems, the atomic user interactions are finite. This allows for the user’s interaction
to be abstracted into a set of precise digital values.

The solutions that have already tackled similar challenges, such as keyboard pre-
diction [51], language translation [61], or even chatbots [62,63], have shown that deep
learning approaches provide sufficiently strong prediction capabilities. Again, various
structures of neural networks can be applied to predict or anticipate the outcome of an
unstructured or semi-structured string of inputs [64]. Here, recurrent neural network
(RNN) architectures, transformer-based architectures, or long short-term memory (LSTM)
architectures have been applied [65–67] to varied degrees of success. Further expanding
upon these models, probabilistic architectures such as Bayesian neural networks can be
used to rank the probability of the anticipated actions. This would allow for the program to
decide on its own whether it should act upon these results, avoiding the potential issues of
intruding on the design process with unnecessary feedback. Furthermore, the subjective AI
module needs to be capable of extracting the boundary conditions for various objective AI
agents. Such feedback can be extracted from user interactions based on the feedback they
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are presented. Similar solutions have already been explored in the areas of online retail
and marketing, where LSTM solutions have been used to capture the evolving interest of
users and optimize click-through rates [68]. Using the results from such an approach can
approximate the design requirements, ideas and priorities of the planner without needing
them to specify such vague and challenging-to-define parameters.

4.4. Design Alternative AI

To combine both the subjective AI and the objective AI modules, a design alternative
AI will provide the planner with similar designs. These designs would be based on the
design preferences and requirements extracted from the subjective AI module. To correctly
provide the user only with the alternatives that would deliver better results regarding the
specific design requirements, the objective AI module will provide an ad hoc evaluation
for each of requirement and for every simulation, regulation and analysis. The design
alternative AI module would then utilize the design requirements from the subjective
AI to rank the evaluation and provide only the highest-ranked options to the planner.
For the generation of alternative designs, evolutionary and genetic algorithms will be
employed. Such algorithms have been widely utilized in urban planning for space and cost
optimization problems [69,70]. The inherent disadvantages of high computation costs and
minimum evaluation criteria can be overcome due to the ad hoc nature of the objective
AI agents.

5. Conclusions

This paper argues the advantages and importance of decision design support systems
in the creative context of early planning decision phases.

Based on the research performed on the state-of-the-art solutions, it was highlighted
that such systems are purely reactive. Therefore, this paper argued for a shift towards a
proactive multi-agent assistance system. This was derived from the observation that the
sheer amount of decision-supporting information available, even in the early stages, has be-
come overwhelming for humans to adequately process while maintaining an uninterrupted
design thought process.

The paper outlined the base requirements for such systems, compacting them into four
main components—interoperability, vague inputs, ad hoc feedback and user-friendliness.
It expanded upon these requirements with a proposed system concept for how such a
complex system can be developed modularly, allowing for even further flexibility in its
integration into existing design processes. Here, the focus fell on the distinction between
the objective criteria—such as simulations (wind, solar) and regulations—and the subjective
criteria—the specific design requirements and preferences of the planner. By utilizing both
sides, a generative approach can be employed so that the assistant provides information
regarding the current design and design-specific improvements.
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